organic compounds

T = 180 (2) K $0.28 \times 0.14 \times 0.06 \text{ mm}$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(3SR,2'SR)-3-(2'-Anilino-2'-phenylethyl)phthalide

Naoual Laghrib,^a Mohamed Azrour,^b Jean-Claude Daran,^c* Rachid Fihi^a and Lhou Majidi^a

^aLaboratoire des Substances Naturelles et Synthèse et Dynamique Moléculaire, Faculté des Sciences et Techniques, BP 509, Errachidia, Morocco, ^bLaboratoire de Chimie Physique des Matériaux, Faculté des Sciences et Techniques, BP 509, Errachidia, Morocco, and ^cLaboratoire de Chimie de Coordination, UPR-CNRS 8241, 205, route de Narbonne, 31077 Toulouse Cedex, France Correspondence e-mail: daran@lcc-toulouse.fr

Received 8 October 2007; accepted 11 October 2007

Key indicators: single-crystal X-ray study; T = 180 K; mean σ (C–C) = 0.003 Å; R factor = 0.037; wR factor = 0.083; data-to-parameter ratio = 12.6.

Evolution of the major spiroadduct obtained by cycloaddition of *C*,*N*-diphenylnitrone with 3-methylenephthalide in Zn/3 *M* HCl media gives a rearrangement product. The reaction did not stop at the formation of an aminoalcohol but was followed by dehydration; the title compound, $C_{22}H_{19}NO_2$, was obtained after hydrogenation. It exists in the diastereoisomer *SS/RR* form. The packing is stabilized by weak N-H···O and C-H···O hydrogen-bond interactions.

Related literature

For related structures, see: Daran *et al.* (2006); Laghrib *et al.* (2007). For related literature, see: Goti *et al.* (1997); Jung & Vu (1996); Padwa *et al.* (1981); Roussel *et al.* (2003).

Experimental

Crystal data

$C_{22}H_{19}NO_2$	
$M_r = 329.38$	
Triclinic, P1	
a = 6.303 (2) Å	
b = 7.774 (2) Å	

Z = 2Mo $K\alpha$ radiation $\mu = 0.08 \text{ mm}^{-1}$

Data collection

Stoe IPDS diffractometer	2852 independent reflections
Absorption correction: none	1706 reflections with $I > 2\sigma(I)$
7801 measured reflections	$R_{int} = 0.064$
Refinement	

 $R[F^2 > 2\sigma(F^2)] = 0.037$ 226 parameters $wR(F^2) = 0.083$ H-atom parameters constrainedS = 0.81 $\Delta \rho_{max} = 0.16 \text{ e } \text{ Å}^{-3}$ 2852 reflections $\Delta \rho_{min} = -0.16 \text{ e } \text{ Å}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots \mathbf{A}$
$N1 - H1A \cdots O2^{i}$ $C3 - H3 \cdots O2^{i}$ $C51 - H51 \cdots O2^{ii}$	0.88 1.00 0.95	2.60 2.36 2.57	3.390 (2) 3.279 (3) 3.366 (2)	150 152 141

Symmetry codes: (i) x + 1, y, z; (ii) -x, -y + 1, -z.

Data collection: *IPDS* (Stoe, 2000); cell refinement: *IPDS*; data reduction: *X-RED* (Stoe, 1996); program(s) used to solve structure: *SIR97* (Altomare *et al.*, 1999); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEPIII* (Burnett & Johnson, 1996) and *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2049).

References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
- Daran, J.-C., Fihi, R., Roussel, C., Laghrib, N., Azrour, M., Ciamala, K. & Vebreld, J. (2006). Acta Cryst. E62, 0329–0331.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Goti, A., Fedi, V., Namelli, L., De Sarlo, F. & Brandi, A. (1997). *Synlett*, pp. 577–578.
- Jung, M. E. & Vu, B. T. (1996). J. Org. Chem. 61, 4427-4433.
- Laghrib, N., Azrour, M., Daran, J.-C., Fihi, R. & Majidi, L. (2007). Acta Cryst. E63, 0402–0404.
- Padwa, A., Koehler, K. F. & Rodriguez, A. (1981). J. Am. Chem. Soc. 103, 4974–4975.
- Roussel, C., Fihi, R., Ciamala, K., Vebrel, J., Zair, T. & Riche, C. (2003). Org. Biomol. Chem. 1, 2689–2698.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Stoe (1996). X-RED. Revision 1.08. Stoe & Cie, Darmstadt, Germany.
- Stoe (2000). IPDS. Version 2.93. Stoe & Cie, Darmstadt, Germany.

`Ph

c = 17.466 (5) Å $\alpha = 88.15 (3)^{\circ}$ $\beta = 88.99 (4)^{\circ}$ $\gamma = 86.62 (4)^{\circ}$ $V = 853.8 (4) \text{ Å}^{3}$

	H 2 Ph
`0́`\ 2 Н	Т н нn

Acta Cryst. (2007). E63, o4333 [doi:10.1107/S1600536807050039]

(3SR,2'SR)-3-(2'-Anilino-2'-phenylethyl)phthalide

N. Laghrib, M. Azrour, J.-C. Daran, F. Rachid and M. Lhou

Comment

We previously reported that 1,3-dipolar cycloaddition of *C*,*N*-diphenylnitrone (1) to 3-methylenephtalide (2) produced a mixture of diastereoisomers (Roussel *et al.*, 2003). The molecular structure of the major cycloadduct (**3a**) was confirmed by single-crystal X-ray diffraction (Daran *et al.*, 2006) (Fig. 1).

In a previous paper (Laghrib *et al.*, 2007), we described the evolution of isoxazolidines obtained by cycloaddition of *C*-tolyl-*N*-phenylnitrone with Tulipalin A in Zn / HCl media. The reduction of the nitrogen-oxygen bond of the heterocycle led to a functionalized γ -lactam. This reduction process has been successfully applied for the preparation of biologically active compounds (Goti *et al.*, 1997; Padwa *et al.*, 1981; Jung & Vu, 1996). We report here, on the evolution of major spiroadduct (**3a**) treated with Zn / 3*M* HCl. The reaction did not stop at the formation of aminoalcohol but was followed by dehydratation and hydrogenation to give (**4**) (Fig.2).

 1 H and 13 C NMR studies of (4) did not provide much information on the structural behaviour of this product, therefore, we conducted single-crystal X-ray diffraction studies to get detailed information of the stereochemistry of (4).

The title compound (4) is built up from a phtalide fragment connected to a 2-*N*-phenyl-2-phenylethyl moiety (Fig. 2). The structural anlysis shows that compound (4) is the (*SR/RS*) diastereoisomer. The phtalide group is planar as expected with the largest deviation from the mean plane being 0.030 (2)Å at C41. It makes a dihedral angle of 51.37 (6)° with the *N*-phenyl group and 81.06 (6)° with the benzene ring. The benzene and the *N*-phenyl rings are nearly perpendicular with a dihedral angle of 80.01 (7)°. The occurrence of weak N–H…O and C–H…O hydrogen bonding interactions (see Table) help in stabilizing the packing.

Experimental

Spiroadduct (**3a**) was synthesized by the procedure described in (Roussel *et al.*, 2003). Synthesis of (**4**): to a solution of spiroheterocycle (**3a**) (0.64 mmol) in the minimum volume of acetone (3 ml) was added activated zinc dust (61.18 mmol). To the resulting suspension was slowly added 3M HCl (52.5 ml). The mixture was then stirred for 2 h at room temperature. The zinc was filtered off and rinsed with 3M HCl and CHCl₃. To this mixture, while vigorously stirring, solid K₂CO₃ was slowly added until pH = 7. After stirring for two additional hours, the organic layer was separated, dried with Na₂SO₄, filtered and concentrated to give the product as a solid, which was recrystallized from CH₂Cl₂.

Refinement

All H atoms attached to C atoms and N atom were fixed geometrically and treated as riding with C–H = 0.95Å (aromatic), 0.99Å (methylene), 1.00Å (methine) and N–H = 0.88 Å with $U_{iso}(H) = 1.2U_{eq}(C \text{ or } N)$.

Figures

Fig. 1. The scheme of formation the major cycloadduct (3a), which confirmed by single-crystal X-ray diffraction (Daran et al., 2006).

Fig. 3. Molecular view of the title compound with the atom-labelling scheme. Displacements

(3SR,2'SR)-3-(2'-Anilino-2'-phenylethyl)phtalide

Crystal data

C ₂₂ H ₁₉ NO ₂	Z = 2
$M_r = 329.38$	$F_{000} = 348$
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.281 {\rm Mg m}^{-3}$
a = 6.303 (2) Å	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
b = 7.774 (2) Å	Cell parameters from 1428 reflections
c = 17.466 (5) Å	$\theta = 2.2 - 26.2^{\circ}$
$\alpha = 88.15 \ (3)^{\circ}$	$\mu = 0.08 \text{ mm}^{-1}$
$\beta = 88.99 \ (4)^{\circ}$	T = 180 (2) K
$\gamma = 86.62 \ (4)^{\circ}$	Plate, colourless
$V = 853.8 (4) \text{ Å}^3$	$0.28 \times 0.14 \times 0.06 \text{ mm}$

Data collection

Stoe IPDS diffractometer	1706 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.064$
Monochromator: Graphite	$\theta_{\text{max}} = 25.0^{\circ}$
T = 180(2) K	$\theta_{\min} = 2.3^{\circ}$
φ scans	$h = -7 \rightarrow 7$
Absorption correction: none	$k = -9 \rightarrow 9$
7801 measured reflections	$l = -20 \rightarrow 20$
2852 independent reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.037$	H-atom parameters constrained
$wR(F^2) = 0.083$	$w = 1/[\sigma^2(F_o^2) + (0.0408P)^2$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 0.81	$(\Delta/\sigma)_{\text{max}} = 0.001$
2852 reflections	$\Delta \rho_{max} = 0.16 \text{ e } \text{\AA}^{-3}$
226 parameters	$\Delta \rho_{\rm min} = -0.16 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	Extinction correction: none

Special details

methods

Experimental. The data were collected on a Stoe Imaging Plate Diffraction System (*IPDS*). The crystal-to-detector distance was 70 mm. 167 frames (3 min per frame) were obtained with $0 < \phi < 250.5^{\circ}$ and with the crystals rotated through 1.5° in ϕ . Coverage of the unique set was over 93.5% complete to at least 26.08°. Crystal decay was monitored by measuring 200 reflections per frame. The Stoe *IPDS* because of the fixed phi spindle does not allow easy access to the cusp of data along the mount axis which explains why the _______diffrn_measured_fraction_theta_full is low, 0.94. This is an instrumentation-based restriction, which the authors have little control over.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and *R*-factors based on ALL data will be even larger.

r	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
0.6495 (3)	0.8355 (2)	0.27286 (9)	0.0254 (4)
0.5358	0.9230	0.2560	0.030*
0.6137 (3)	0.6640 (2)	0.23486 (9)	0.0272 (4)
0.7379	0.5834	0.2456	0.033*
0.4879	0.6140	0.2596	0.033*
0.5806 (3)	0.6733 (2)	0.14912 (9)	0.0247 (4)
0.7025	0.7274	0.1223	0.030*
0.2424 (3)	0.6721 (3)	0.09876 (9)	0.0289 (5)
0.5482 (3)	0.4991 (2)	0.11756 (9)	0.0239 (4)
0.3477 (3)	0.5016 (2)	0.08731 (9)	0.0248 (4)
0.2692 (3)	0.3550 (3)	0.05605 (9)	0.0321 (5)
	0.6495 (3) 0.5358 0.6137 (3) 0.7379 0.4879 0.5806 (3) 0.7025 0.2424 (3) 0.5482 (3) 0.3477 (3) 0.2692 (3)	y 0.6495 (3) 0.8355 (2) 0.5358 0.9230 0.6137 (3) 0.6640 (2) 0.7379 0.5834 0.4879 0.6140 0.5806 (3) 0.6733 (2) 0.7025 0.7274 0.24224 (3) 0.6721 (3) 0.5482 (3) 0.4991 (2) 0.3477 (3) 0.5016 (2) 0.2692 (3) 0.3550 (3)	y z 0.6495 (3) 0.8355 (2) 0.27286 (9) 0.5358 0.9230 0.2560 0.6137 (3) 0.6640 (2) 0.23486 (9) 0.7379 0.5834 0.2456 0.4879 0.6140 0.2596 0.5806 (3) 0.6733 (2) 0.14912 (9) 0.7025 0.7274 0.1223 0.2424 (3) 0.6721 (3) 0.09876 (9) 0.5482 (3) 0.4991 (2) 0.11756 (9) 0.3477 (3) 0.5016 (2) 0.08731 (9) 0.2692 (3) 0.3550 (3) 0.05605 (9)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H51	0.1308	0.3573	0.0352	0.039*
C61	0.4010 (4)	0.2075 (3)	0.05679 (10)	0.0387 (5)
H61	0.3534	0.1060	0.0354	0.046*
C71	0.6024 (4)	0.2038 (3)	0.08808 (10)	0.0392 (5)
H71	0.6887	0.0994	0.0886	0.047*
C81	0.6799 (3)	0.3501 (3)	0.11865 (9)	0.0322 (5)
H81	0.8181	0.3479	0.1395	0.039*
C111	0.9257 (3)	1.0536 (2)	0.26694 (9)	0.0241 (4)
C112	1.1168 (3)	1.1053 (2)	0.23592 (9)	0.0273 (4)
H112	1.1921	1.0348	0.1999	0.033*
C113	1.1997 (3)	1.2580 (3)	0.25650 (10)	0.0310 (5)
H113	1.3323	1.2898	0.2355	0.037*
C114	1.0895 (3)	1.3644 (2)	0.30772 (10)	0.0321 (5)
H114	1.1458	1.4692	0.3220	0.039*
C115	0.8979 (3)	1.3164 (2)	0.33753 (9)	0.0303 (5)
H115	0.8216	1.3893	0.3724	0.036*
C116	0.8137 (3)	1.1633 (2)	0.31757 (9)	0.0274 (4)
H116	0.6801	1.1329	0.3383	0.033*
C121	0.6298 (3)	0.8057 (2)	0.35941 (9)	0.0265 (4)
C122	0.8025 (3)	0.7506 (2)	0.40326 (9)	0.0321 (5)
H122	0.9399	0.7382	0.3802	0.039*
C123	0.7758 (4)	0.7132 (3)	0.48085 (10)	0.0406 (5)
H123	0.8948	0.6733	0.5105	0.049*
C124	0.5789 (4)	0.7336 (3)	0.51517 (11)	0.0451 (6)
H124	0.5615	0.7079	0.5684	0.054*
C125	0.4071 (4)	0.7910 (3)	0.47233 (11)	0.0486 (6)
H125	0.2707	0.8059	0.4960	0.058*
C126	0.4324 (3)	0.8273 (3)	0.39477 (10)	0.0385 (5)
H126	0.3128	0.8674	0.3655	0.046*
N1	0.8532 (2)	0.8946 (2)	0.24813 (8)	0.0309 (4)
H1A	0.9361	0.8266	0.2197	0.037*
O1	0.38175 (19)	0.77239 (16)	0.13285 (6)	0.0298 (3)
O2	0.0643 (2)	0.72846 (19)	0.08469 (7)	0.0448 (4)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0253 (10)	0.0290 (11)	0.0227 (9)	-0.0062 (9)	-0.0024 (7)	-0.0033 (8)
C2	0.0311 (11)	0.0294 (11)	0.0216 (8)	-0.0062 (9)	-0.0027 (7)	-0.0021 (8)
C3	0.0195 (10)	0.0293 (11)	0.0253 (9)	-0.0010 (9)	-0.0016 (7)	0.0001 (8)
C4	0.0252 (11)	0.0414 (13)	0.0204 (9)	-0.0025 (10)	-0.0013 (8)	-0.0063 (8)
C31	0.0259 (10)	0.0278 (11)	0.0183 (8)	-0.0038 (9)	0.0020 (7)	-0.0031 (7)
C41	0.0262 (10)	0.0316 (11)	0.0174 (8)	-0.0065 (9)	0.0027 (7)	-0.0048 (8)
C51	0.0339 (11)	0.0409 (13)	0.0231 (9)	-0.0140 (11)	0.0011 (8)	-0.0058 (9)
C61	0.0602 (15)	0.0329 (13)	0.0246 (10)	-0.0137 (12)	0.0026 (9)	-0.0080 (9)
C71	0.0592 (15)	0.0280 (12)	0.0299 (10)	0.0027 (11)	0.0035 (10)	-0.0049 (9)
C81	0.0341 (12)	0.0355 (12)	0.0265 (10)	0.0010 (10)	0.0000 (8)	-0.0019 (8)
C111	0.0251 (10)	0.0264 (11)	0.0209 (9)	-0.0028 (9)	-0.0030 (7)	0.0003 (8)

C112	0.0268 (11)	0.0296 (11)	0.0255 (9)	-0.0019 (9)	0.0015 (8)	-0.0006 (8)
C113	0.0272 (11)	0.0326 (12)	0.0332 (10)	-0.0053 (10)	0.0012 (8)	0.0037 (9)
C114	0.0409 (13)	0.0266 (11)	0.0298 (10)	-0.0089 (10)	-0.0034 (9)	-0.0008 (8)
C115	0.0387 (12)	0.0277 (12)	0.0246 (9)	-0.0012 (10)	-0.0003 (8)	-0.0033 (8)
C116	0.0269 (11)	0.0308 (11)	0.0249 (9)	-0.0039 (9)	0.0030 (7)	-0.0038 (8)
C121	0.0311 (11)	0.0263 (11)	0.0230 (9)	-0.0064 (9)	-0.0006 (8)	-0.0064 (8)
C122	0.0328 (12)	0.0361 (12)	0.0279 (10)	-0.0021 (10)	-0.0027 (8)	-0.0066 (9)
C123	0.0480 (14)	0.0443 (14)	0.0295 (10)	-0.0001 (12)	-0.0105 (9)	-0.0018 (9)
C124	0.0549 (15)	0.0545 (15)	0.0257 (10)	-0.0036 (13)	0.0025 (10)	0.0005 (10)
C125	0.0404 (13)	0.0701 (17)	0.0346 (11)	-0.0037 (13)	0.0123 (10)	0.0017 (11)
C126	0.0268 (11)	0.0565 (15)	0.0322 (11)	-0.0037 (11)	0.0001 (8)	0.0018 (10)
N1	0.0305 (9)	0.0307 (10)	0.0328 (8)	-0.0095 (8)	0.0096 (7)	-0.0128 (7)
O1	0.0283 (7)	0.0317 (8)	0.0298 (7)	0.0007 (6)	-0.0061 (5)	-0.0077 (6)
O2	0.0276 (8)	0.0636 (11)	0.0433 (8)	0.0077 (8)	-0.0087 (6)	-0.0151 (7)

Geometric parameters (Å, °)

1.443 (2)	C111—N1	1.393 (2)
1.526 (2)	C111—C116	1.401 (2)
1.539 (2)	C112—C113	1.385 (3)
1.0000	C112—H112	0.9500
1.514 (2)	C113—C114	1.388 (2)
0.9900	C113—H113	0.9500
0.9900	C114—C115	1.374 (3)
1.459 (2)	C114—H114	0.9500
1.505 (2)	C115—C116	1.389 (3)
1.0000	С115—Н115	0.9500
1.207 (2)	С116—Н116	0.9500
1.365 (2)	C121—C122	1.381 (3)
1.465 (3)	C121—C126	1.383 (3)
1.377 (2)	C122—C123	1.386 (3)
1.385 (3)	C122—H122	0.9500
1.399 (3)	C123—C124	1.372 (3)
1.376 (3)	С123—Н123	0.9500
0.9500	C124—C125	1.371 (3)
1.389 (3)	C124—H124	0.9500
0.9500	C125—C126	1.383 (3)
1.389 (3)	С125—Н125	0.9500
0.9500	C126—H126	0.9500
0.9500	N1—H1A	0.8800
1.388 (3)		
113.53 (14)	C112—C111—C116	118.24 (16)
109.13 (14)	N1-C111-C116	122.22 (16)
107.81 (16)	C113—C112—C111	121.20 (16)
108.8	C113—C112—H112	119.4
108.8	C111—C112—H112	119.4
108.8	C112-C113-C114	120.14 (18)
116.27 (15)	C112—C113—H113	119.9
108.2	C114—C113—H113	119.9
	1.443 (2) $1.526 (2)$ $1.539 (2)$ 1.0000 $1.514 (2)$ 0.9900 0.9900 $1.459 (2)$ $1.505 (2)$ 1.0000 $1.207 (2)$ $1.365 (2)$ $1.465 (3)$ $1.377 (2)$ $1.385 (3)$ $1.376 (3)$ 0.9500 $1.389 (3)$ 0.9500 $1.389 (3)$ 0.9500 $1.389 (3)$ 0.9500 $1.388 (3)$ $113.53 (14)$ $109.13 (14)$ $107.81 (16)$ 108.8 108.8 108.8 108.8 108.8	1.443 (2) $C111-NI$ $1.526 (2)$ $C111-C116$ $1.539 (2)$ $C112-C113$ 1.0000 $C112-H112$ $1.514 (2)$ $C113-C114$ 0.9900 $C113-H113$ 0.9900 $C114-C115$ $1.459 (2)$ $C114-H114$ $1.505 (2)$ $C115-C116$ 1.0000 $C115-H115$ $1.207 (2)$ $C116-H116$ $1.365 (2)$ $C121-C122$ $1.465 (3)$ $C121-C126$ $1.377 (2)$ $C122-C123$ $1.385 (3)$ $C123-C124$ $1.376 (3)$ $C123-H123$ 0.9500 $C125-C126$ $1.389 (3)$ $C125-H125$ 0.9500 $C126-H126$ 0.9500 $C126-H126$ 0.9500 $C126-H126$ 0.9500 $C126-H126$ 0.9500 $C126-H126$ 0.9500 $N1-H1A$ $1.388 (3)$ $S113-C112-C111$ 108.8 $C113-C112-C111$ 108.8 $C112-C113-C114$ $116.27 (15)$ $C112-C113-H113$ 108.2 $C114-C113-H113$

C1—C2—H2A	108.2	C115—C114—C113	119.20 (18)
C3—C2—H2B	108.2	C115—C114—H114	120.4
C1—C2—H2B	108.2	C113—C114—H114	120.4
H2A—C2—H2B	107.4	C114—C115—C116	121.14 (17)
O1—C3—C31	103.91 (14)	C114—C115—H115	119.4
O1—C3—C2	109.13 (13)	C116—C115—H115	119.4
C31—C3—C2	112.10 (15)	C115—C116—C111	120.04 (17)
O1—C3—H3	110.5	С115—С116—Н116	120.0
С31—С3—Н3	110.5	С111—С116—Н116	120.0
С2—С3—Н3	110.5	C122—C121—C126	118.79 (17)
O2—C4—O1	120.36 (17)	C122—C121—C1	121.80 (16)
O2—C4—C41	131.13 (18)	C126—C121—C1	119.35 (16)
O1—C4—C41	108.50 (15)	C121—C122—C123	120.20 (19)
C41—C31—C81	121.00 (17)	C121—C122—H122	119.9
C41—C31—C3	108.59 (15)	C123—C122—H122	119.9
C81—C31—C3	130.33 (16)	C124—C123—C122	120.47 (19)
C31—C41—C51	121.69 (18)	C124—C123—H123	119.8
C31—C41—C4	108.45 (15)	C122—C123—H123	119.8
C51—C41—C4	129.77 (17)	C125—C124—C123	119.72 (19)
C61—C51—C41	117.12 (18)	C125—C124—H124	120.1
C61—C51—H51	121.4	C123—C124—H124	120.1
C41—C51—H51	121.4	C124—C125—C126	120.1 (2)
C51—C61—C71	121.41 (18)	C124—C125—H125	120.0
С51—С61—Н61	119.3	C126—C125—H125	120.0
С71—С61—Н61	119.3	C125—C126—C121	120.71 (19)
C61—C71—C81	121.17 (19)	C125—C126—H126	119.6
С61—С71—Н71	119.4	C121—C126—H126	119.6
C81—C71—H71	119.4	C111—N1—C1	123.48 (14)
C31—C81—C71	117.60 (18)	C111—N1—H1A	118.3
C31—C81—H81	121.2	C1—N1—H1A	118.3
C71—C81—H81	121.2	C4—O1—C3	110.49 (13)
C112—C111—N1	119.53 (15)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\dots}\!A$
N1—H1A····O2 ⁱ	0.88	2.60	3.390 (2)	150
C3—H3···O2 ⁱ	1.00	2.36	3.279 (3)	152
C51—H51···O2 ⁱⁱ	0.95	2.57	3.366 (2)	141
Symmetry codes: (i) $x+1$, y , z ; (ii) $-x$, $-y+1$, $-z$.				

Fig. 2

